DOCUMENT RESUME

ED 075 496 ' T™ 002 597

AUTHCR Huberty, Carl J.; Blommers, Paul J.

TITLE An Empirical Comparison of the Accuracy of Selected
Multivariate Classification Rules.

PUB CATE 73

NOTE 42p.; Paper presented at American Educational

Research Association Meeting (New Orleans, Louisiana,
February 25-March 1, 1973)

EDRS PRICE MF-$O‘65 HC-3$3.29
DESCRIPTORS - #¥Classification; *Comparative Analysis; Computer
: Science; Group Membership; Multiple Regression
Analysis; *Predictor Variables; *Probability;
Statistical Analysis

ABSTRACT .
This study involved two phases: first when
classification was based on the calibration sample, and second in a
cross-validation setting. Computer-generated data were used. Results
obtained from rules based on probabilities of group membership were
compared for accuracy when classifying in the discriminant space and
in the predictor variable spaces. In the first phase accuracy was
greater in the predictor variable spaces, while the reverse was true
in the second phase. In general, rules based on probabilities of
group membership were approximately egually accurate, and more
accurate than a rule related to a multiple regression analysis. Other
findings are also discussed. {Author)



FILMED FROM BEST AVAILABLE COPY

U S DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DONUMENT HAS BEEH REPRO-
OUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING (T POINTS OF VIEW OR OPIN
IONS STATED DO NCT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU
CATION POSITION OR POLICY

ED 075496

¥

AN EMPIRICAL COMPARISON OF THE ACCURACY OF SELECTED

MULTIVARIATE CLASSIFICATION RULES

Litn)
=T
E"' - Carl J Huberty _ Paul J. Blommers

Universigy of Georgia University of Iowa




O

ERIC

Aruitoxt provided by Eic:

Ahstract

‘This study involved two phases: first when classification was
based on the calibration éample, and second in a cross~validation
setting. Computer generated data were used. Results obtainea from
rules based on probabilities of group membership were compared for
accuracy when classifying in the discriminant'spéce and in the predic-
tor variable spaces. In the first jhase accuracy was.greater in the
predictor variable spaces, while the reverse was true in the second
phase. In general, rules based on probabilities of group membership
were approximately edually accurate, and more accurate than a rule.
related to a multiple regression analysis. Other findings are also

discussed.



AN EMPIRICAL COMPARISON OF THE ACCURACY OF SELECTED

MULTIVARIATE CLASSIFICATION RULES

It is sometirs of interest to a researcher to cla;sify individuals
or objects into one of several categories or classes on the basis of a
set of observed measures. In so doing the researcher nust choose an
appropriate nultivariate classification rule. TFron the investigator's
Qiewpoing, appropriatencss may be determined in terms of 1) having a
sound theoretical basis, 2) being capable of accormodating more tan
two criterion populations, and 3) having been adapted, -or readily adap-
table, to computer programming. Many such multiYariéte classification
decision rules have been proposed. This study dealt with five selected
rules of identifying the population to which an individual may be
assigned.

In a multivariate classification problem we begin with, say, k
.subsamples (or groups) of individuals, independently drawn from k well
defined populations. There are, say, p measures available for each of
the N individuals that comprise the total sample. The criterion employed
in classifying an individual on the basis of the p measures depends upon
the particular decision rqle used. For each of the rules investigated,
it is necessary to calculate k numcfical values--one corresponding to
each of the k groups--for every individual and then to classify according
to the criterion of the rule employed. . .
| In this study, two basic assumptions were made: 1) the k populations

are p-variate norral, and 2) the k populztion covariance matrices are



identical.”® A brié» discussion of the rules under scrutiny in this in-
vestigétion follows.

Rule 1. Assuming equal costs of misclassification and mazking the
above two assumptions, a (linear) discriminant score of individuwal n for
the gth population is (Rao, 1965, p. 488)

(1] % log, 1] - (X - gg)‘ $~1 X

0 Eg) + loge ﬂg .

where

t = the common population (p x p) covariance matrix,
= the (p x 1) predictor score vector for individual n,
= the (p x 1) centroid for population g, and

T _ = the probability that individual n (selected at random)

is from population g.

Since the expression

Jilog, B -y k! $TK

would be common to all k scores for a given individual, the equivalent

of [1], for classification purposes, is
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Substituting (maximum likelihood) estimates of i and Eg yields a dis-

criminant score of individual n for group g:

- =y =1
2 L =% ¢ x -4%X'¢C
(2] % 1 X

{8 + log, "g :

where

gg = (p x 1) vector of observed mean scores for group g, and



C = the (p x p) pooled within-groups covariance catrix based

on the sazple of ¥ individuals.
Here the elements of the matriz C are given by

- e. .
=Xl = ves
cij (N - }\) ] 1’ j ls ? p’

where
k Ng
15 7 gf1 nf1 Pygy ~ Xip) Kypn - X0,
with : )
Ng = the nuzber of individuals in group g,
ign = the score on predictor variable i for individual n of
group g, 2ad
iig = the meén of predictor variable i for group g.

0f course, since rample estimates are used, an optimum solution cannot
be claimed.
2
The first rule investigated may be stated” as

[3) RytL 2L g =1, e, ki .

This is a maxinum likelihood method of classification in the sense that
it 1s equivalent (when populatioq values are known) to the rule §hich :
assigns the individual with measurements X to that population for which
the posterior probability of population membership has the highest value,
Rule 2. Another indirect application of the criterion of highest

probability is as follows (gee Cooley and Lohnes, 1971, p. 264). TFor




each individual n the values of k quadratic forms are determined; these

quadratic forms are given by
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If sampling is from a p-variate normal pOpulation, the resulting values
of [4] follow a chi-square distribution with p degrees of freedom (Rao,
1952, p. 55). Geometrically, the value of [4] is a measure of the close-
ness of individual n's profile point, (X 4y e Xpn), in the p~space

of group g to the centroid of group g. Since the tabled probability of
a given chi~square value is the likelihood of obtaining a larger value,
this probability may be considered the proportion of individual points
that would be expected.(in the long run) to lie beyond the locus of
density (or "centour") on which this particular individual's poinf lies.
The “centour score" for an individual, then, yields an estimate of the
percent of individuals in a population that are further from the centroid.:
The higher the group "centour score" of an individual, the greater is

his similarity to that group. Hence, this decision rule involves assign-
ing individual n to that population for which his centour score is
highest, or equivalently, to that population which yields the lowest chi-
>square sample value given by [L4]. Symbolically, this rule may be stated

as



[5] R, : XZ isxz v 8 8 =1, ..., k;g#g’

Heterogeneity of dispersioa enters into [5] in a somewhat un~-
desirable way in that the greater the dispersion for a particular sample
the greater the likelihood that individuals of unknown classification
will be identified with it. Yor does [5] take into acé0unt prior prob-
abilities, wg, of population membership. Only if the sample dispersion
matrices are idemtical and the prior probabilities are the same does [4]
result in a minimum number of miscla;sifications. One way of adjusting
for heterogeneity of dispersion and prior pfobability consists of modify-
ing [5] (sez Tatsuoka, 1971, pp. 222-225 for other modifications of [5]):

"g
+ 2 1oge _ .
g

D
2 & 2
Lag' log,

[6] x;g
Rule 3. A more direct application of the classification criterion

of highest posterior probability of population membership is the basis for
the third decision rule (see Cooley and Lohnes, 1971, p. 267). Here a set
of hypotheses regarding population membership of individual n is involved.
One of the hypotheses is to be retained and the others rejected. The fol-
lowing notation for determining the likelihood of such an hypothesis is

used:

7] PR [X) . e =1 . ke

This denotes the probability of hypothesis g, given the score vector of
individual n. Hypothesis g, Hg, states that individual n belongs to pop-

ulation g. For each individual there would be k such hypotheses, and that



hypothesis for which the likelihood is a maximum is selected.

The conditional probabilities of {7] can be computed from Bayes'
formula, pfovided the prior probabilities are known or can be estimated.
Let P(§n I Hg)_denote the conditionél probability of observing the score
vector Zn’ given that Hg is true; i.e., the probability that individual
n selected at fandom from population g will have the particular combina-
tion of predicfor scores, zn (technically, within a "small" neighborhood
of }n). Then the conditional probability that Hg is true, given that

observation vector En for individual n was obtained is

m P H)
(81 P M1 X)) =

Under the assumptiou that the predictor variable veciors follow a p-
variate normal distribution in each of the k populations, [B]Amay be

expressed as

8
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g 8
‘where Xﬁg' is defined by [4]. Formula [9] gives the (posterior) prob-
ability that individual n with the score vector X s selected at random
from the entire sample, will be a member of population g. Thus, a third
classification rule is to assign an individual to that population for

which his posterior probability of population membership is largest.
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Such a rule may be expressed as

[10] R,:P 2P ,, g,8 =1-,k;g#tg.

Since [9] utili%es information regarding both prior probébilities and
differences in dispersions, [10] produces the same results as those ob-
tained by using [6] (iluberty, 1969, p. 79).

Since the dgnominators of Png and Png' for a given individual are
identical, classification according to‘Rule 3 may be equivalently per-

formed by assigning individual n to that population g for which the

value of
|D I"I/Z 1. 2 )
T exp (-} X
2! p( Xng

is a maximum. And since the logarithm function is monotonic increasing,
this is equivalent to maximizing

-1 x - X).

1 - %1 X~ X))’
o8 Ty = ' log, [Dg | e - X" D (- By

Pa

1f Dg is replaced by i and 3 by E?’ then this is the same as maximizing

g
[1]. That is, Rule 1 and Rule 3 are the same except for the sample co-
variance matrix used in computing the k values of each classification
statistic.

It is of iﬁterest to note that according to Rﬁlc 2 and 3, c}assifi-
cation is performed in the p-dimensional predictor variable spaces. To

classify in the reduced or discriminant space, it 1s necessary to deter-

mine linear composites of the original scores, i.c., discriminant function

 values (see Cooley and Lohnes, 1971, Ch. 9), and to separate the new
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space defined by these functions info k mutually exciusive regiens.
(These function values are not to be confused with the discriminant
scores mentioned in relation to Rule 1.) To determine the dimension of
the reduced space either the eigenvalues of the usual determinantal equatien
may be subjected to a sigdificance test, or a subset of the non-zero
eigenvalues that accounts for a large percent, say 90, of the discrimina-
ting power of the predictor variable may be chosen. It was decided, for
this study, to employ Bartlectt's fcst of significance (Rao, 1952, p. 373).
(An a-level of .10 was used.) As Tatsuoka (1971, p. 233) points out, it
is reasonable to confine attention to only those discriminant functions
that are statistically significant so as to decrease the reliance on
apparent differences among the criterion groups due to sampling error.
Rule 4. The formulation of the classificatory problem as conceived
by Knutsen (1955) and Horst (195Ga) involves finding separate regression
equations contrasting each criterion group in turn with all others. In
finding the regression equation corresponding to group g, the dichotomous
criterion variable assumes the value 1 for individuals in group g and O
otherwise. To determine the weights used in Horst's "least squares"
multiple classification method, the standard procedure is followed. The

least squares estimates of one set of population regression coefficients

are given by

[11]

o
n
=3
1<

where

o
n

the (p x 1) column vector of sample weights,
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T = the (p x p) total sample deviatign §COTe Cross-—
products matrix, and

v = the (p x 1) column vector of deviation score cross-
products of the predictors and the (dickotomous) cri-
terion, ¥ -- the deviations being taken from the grand
mean.

Here, the elements of T are given by

k X
8 = =
t.,.= I I (x, - X)X, -X),i,j =1, *++, P,
13 g=1 n=1 ign i jgn i
where
ii = the mean of the scores on predictor variable i for all

N individuals.
The jth element of v for group g Eoutrasted with the remaining groups is

given by

N Ng N
: ox,_ vy =1 ¥ _-=B X,
jgn " &n jgn N 1. Jgn

[ > 1A

n=1 n=1 n

To generalize [11] to represent the k sets of weights, we write

the (p x k) matrix, B, vhere
-1
[12] B=.T"7V,

The gth column of B is the set of weights corresponding to the éth.grqup,
and the (p x k) matrix V is a similar extension of v. The veights obtained
from [12] are appropriate for use with deviation scores. If individuals
are to be classified into one of several pOpu‘lations using raw score data,

& correction term must be applied in order to achieve group-to-group compar-
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.se of raw scores instead of deviation scores does not change
the "slope" of the hyperplane but only the point of origin. Therefore, the

regression weights would remain the same. The raw score formula for

predicting membership of individual n in population g from the score vector

-§$ = (Xln’ B Xpn)

is

(13] . Yo = by Xt g

where
Eg = the gth column of B, and
Cg = ?g - Eé :.

In the latter expression,

?g = the mean of the criterion measure which, when the gth
N
group is the one considered, is simply ﬁg—-, and
g = the (p x 1) vector of means of the p predictor variables

for the total sample. -

Classification according to this decision rule requires that for
eacﬁ individual, k composite (regression) scores be obtained (using
equation [13]) which are his k predicted criterion values. Since an
individual's actual criterion score is 1 or 0, depending upon his group
membership, it follows that an individual n may logically be identified

with that population for which his composite weighted score is nearest
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to unity. Thus, we have

[14] R, : | Y -1.0]%| Y - 10 g g =l e kg

ng

Rule 5. The last rule investigated is based upon posterior probability
of population membership, as in Rule 3. However, the methods of calculating
the posterior probabilities for the two rules differ. The formula used to
compute the posterior probabilities in&olved in Rule 5 is based on 'Case E.

*g = i but unknown, Eg unknowﬂ,” presented by Geisser (1966, p. 155). (See
also, Cooley and Lohnes, 1971, p. 269.) Under the assumption of p-variate.
normality, Geisser obtains the ''predictive density of a future observation
(vector) given the available data' via a Bayesian aéproach. Geisser's density

function is

-(N~k+ 1)

N % Ng (x! ¢ x_ ) 5
[15] h(X_ | H) o< ﬁ;—%—f 1+ @ F DO -

where all symbols have been previously defined. Thus, the probability
that an individual n belongs to population g, given that he has a score
vector X is by Bayes' formula,

m h(§n|H )
[16] Q (Hgl>_<>= & & g =1, «oo, k.

"gl h (Z(nIHgl)

Hence, the last rule used in this study may be stated as

[l Ry Qg ® Qgrs 88" =1, =o, ki g # g
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Of course, since for a given individual, the k values of the denominator
of [16] are identical, individual n may be assigned to that populatioﬁ
"Yresponding to the larg=st value of ng h (gnIHg).
All five of these decision rules were judged tobbe appropriate

according to the three criteria mentioned at the outset.

Procedure

To effect the simulation of draving random samples of size N from
k p-variate normal populations with a known common covariance matrix a
highspeed electronic computer--IBM System 360, Model 65--was used. In
this study the number of predictor variables considered was p = 10, and
the numbers of criterion groups were k = 3 and k = 35,

To obtain the population covariahce matrix, $, and the population
mean matrix,'Mpop, we proceeded as follows. The classical factor analysis
model (Harman, 1967, p. 15) may be represented by

m

[18] 2 = hii A F + dj Uj, =1, -+, 10,

where zj, Fh’ and Uj are standardized normal variates, m < 10, and ajh

and dj are real-valued constants. Further assumptions underlying this
model are

Cov (F,, F 1) = Cov (Fh, U,) = Cov ,, U =0,

3

where these covariances refer to population values. Hence,

2 n 2 ’
[19] l=9o0 =E(Zj)= z a, +dj ’ j=1s e, 10s
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and
m : '
= = ' = s o . 3 '
[20] pjjl - E (zj zjl) hil ajh ajlh ] j’ j 1’ s 10’ J # j b
Thus, § (10 x 10) is obtained using the relationship
[21] I=A A+ 0>,
pop Ppop pop
where
Apop = a (10 x m) matrix of elements a4p» and
Dpop = a (10 x 10) diagonal matrix with diagonal elements dj'

Equation [21] is the matrix expression for equations [19] and [20].

m

The communality ( I ajh ) of each of the predictor variables was
h=1 ‘

arbitrarily set at .75, thus making the reliability of variable zj at

least .75.3 This condition gives a Dpop matrix with all diagonal elements

equal to ,50. Any Apop matrix which is consistent with equations [19]
m )

and [20], under the constraint that L a?h = ,75, will suffice.

h=1

ot

Separation between the k populations was accomplished by prescribing

a (10 x k) population weight matrix:4
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_ . R

11 VY12 Y13 ' ¥4 Y15
1
|

Y21 Y22 Yaz o, Va4 Vg
I

Vi1 Y3 0 ! V3, Vgs
|

Y41 0 Y4z, Y44 0
1

0 Wsp W53 1 0 Vs
W= :
pop [

Y61 0 0 C Yes  Ygs
|

0 w72 0 : w74 0
]

0 0 w83 l 0 w8S
]

0 0 0 10 0
]

0 0 0 Yoo 0

b 1 JE—

From wpop a (10 x k) population mean matrix, Mﬁop' was then obtained

(see Footnote 4) by the relationship

M= fTw .
pop pop

The non-zero weights were chosen so that the population values, AZ ,,
of Mahalanobis' generalized distance between (the centroids of) two
populations g and g', were "significant"; i.e., the significance test
presented by Rao (1965, p. 480) would find the sample counterpart, Dég' s
significant5 for the smallest value of N used in this study. These

population distances are given by

2 . - S et P
[22]  agge = oy~ wgn)" $0 — 0.
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Corresponding to'ehch total sample size, sample score matrices of
size (10 x Ng) were generated from eaéh of the k p-variate normal popula-
tions having fhe common covariance matrix, t. To gencrate these sample
score matrices a procedure similar to. that suggested by Kaiser and
Dickman (1962) was employed. A number was selected from a uniform (0,1)
distribution using a subroutine called éANDU, corresponding to which a
number from a normal (0,1) "continuous" distribution was located. This
technique was used to produce the elements of both an (m x Ng) matrix ﬁ
and a (10 X Ng) matrix ﬁ. The subsample score mitrix corresponding to

group g was then obtained (see equation [18]) using

¥ = AF + DU+ M
g g’
where
Xg = the (10 x Ng) matrix of ''observed" scores, and
Mg = the (10 x Ng) matrix, the ith row of which contains

the (constant) value uig'

Thus, in essence, random samples were selected on the orthogonal F and U
matrices, and the observed scores were obtained by :he above transforma-
tion.

There were two phases in the present study. In addition to the two
assumptions mentioned at the outset, Phase I of the study was carried out
under the following three restrictions: 3) the a priori probabiliities
of group membership, LPO - 1, ...k, are identical; 4) the number of

individuals drawn from each population is the same; and 5) eacu sample of
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individuals is classified on the basis of data for that sample. For both
k-values the total sample sizes considered were N = 90, 150, 300 and 450.
Because of the fourth restriction in this phase a random sampie of size W
was composed of k subsamples of size ii/n cacn. in this phase sampling
from each of the k populations was repeated 100 times for each value of

N. Restriction 3) lead us to the "uniferm ignorance" assumption of “g = 1/k,

it

g 1, ..., k (see Tatsuoka, 1971, pp. 225-226); hence the m~values called
for in computing the probabilities in Rule 3 were deleted. Rule 5 was not
included in Phase I because under conditions 3) .and 4) it yields results
that are identical to those of Rule 1 (Huberty, 1971).

The purpose of Phase IT was to empirically investigate the accuracy
of the five selected classification rules in a situation where cunditions
3), 4), and 5) were either removed or modified in such a way as to make
them more compatible with the 'real world." 1In practical applications of

-multivariate classification theory, the number of individuals in each of
the subsamples that .: r=sent the k populations of interest often is not
the same. Hence, the k prior probabilities, estimates of which are usually
based on the subsample sizes, can not be taken to be identical. Further, the
investigator often desires to classify individuals whose-proper classifica-
tion has not been determiﬁed at the ;ime when sampling to : place. Thus, he
seeks a relatively accurate classification rule to employ with individuals
other than those in the "calibration sample." The proportion of misclassifi-
cations obtained by using the calibration or norming éample——the "apparent'
error rate--tends to underestimate the "actual" error ' rate--the long run

frequency of misclassifications using replication samples (Geisser, 1970).
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Intuitively this seems reasonable since classificati~ o indi* " dual-s
in the nerming Sy, . «1 s based on a rule which is not cnly in some
sense optimal for these particular individuals but is likely te capital ize
favorably on chance sampling fluctuations., It is for these reasons rhat
“the situation of Phase I was altered by the removal or wmodificatiow -
conditions 3), 4), and 5).

In Phase II of the study the total sample sizes considered wera ¥ = 150,
300, 450, and 600 when three criterion groups were imvolved and N = W,
450, 600 when k = 5. A random sample of size N was composed of k sidpsamples
of size N

caem N .For k = 3, the ratios of subsample sizes were mthitrarily

1’ Kk’
set at 9:5:1. For k = 5, the ratios selected were 17:9:5:3:1. 6 The
assignment of subsample size to each respective group was made by employing
- a table of random numbers. For example, with k = 5 and N = 450, tie assign-

ment was: Nl =75, N, = 15, N, = 45, N, = 180, and ¥, = 135.

2 3 4 5

Rather than apply the selected rules to the sample of "indiviguals™ on
which the--classification statistics are determined, the necessary umtrix
calculations were performed on the first sample and classificationzaccording
toe:@ach of the five7 selected rules was carried out on the succeedimg 100
samples. Thus the comparative accuracy of the rules was determinesf iin a
"cross-validation" setting.

Data Analysis

The criterion used to judge the accuracy of each of the five wecision

rules is the number of correct classifications over k groups. In ammdby=ing

the -accuracy of population identification provided by the rules, a descrip-

tive analysis wes. performed on the number nf correct classifications awer
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all k groups for each value of N and each value of k. Frequency distri-
butions of the number of correct classifications for each'run of the
experiment were obtained and comparisens were made of 1) the means and
standard deviations of these distriyutions, and 2) the intercorrelations
among the numbers of correct classifications obtained from each of the
rules investigated.

: An analysis.of variance was employed in comparing the results of the
rules statistically. The "treatments-by-subjects" design described by
Lindquist (1953, Ch. 6) was applied8 to the numbers of correct classifi-
cations to compare the results of Rules 2 and 3 in both the predictor
variable spaces and the discriminant space. The "treatments" were the
rules being investigated, while the "subjects" were the (160) runs. The

(
following five hypotheses were tested:

(1) H.o @

0" Moy T Mgy T “3D}’
(i1)  Hy : Moy = Hop o
(L) Hy @ ugy = ugp s
(iv) HO RO Hyps and

(v) H, :

"

where ,
uiV = the population mean of the numbers of correct classifi-
cations using Rule 1 (i = 2 or 3) in the predictor variable

spaces,
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“1D = the population mean of the numbers ¢f .. rrect classii.

using Rule 1 (i = 2 or 3) in the disrriidnant spacc,

=
fo
-
n

. the population mean of the numbers oi corre:t clar ‘Lficat: .
using Rule i (1L = 2 or 3) in the spave determince by tie Lo
sults of the tests of hypotheses (ii) and (iii), an'

the population mean of the numbers of correct classifications

for the rule and space that is expected to be '"best" in

accord with the results of the test of hypothesis (iv).

Hypotheses (ii) and (iii) were tested to determinc-if diansindnerics nower
is different when classifying in the discriminant_Space instead i in th:
predictor variable spaces. Of course, the test of hypothesiﬁ (iv) va-
only made if the first hypothesis was rejected. The prc zecurz uced to
- test hypotheses (ii), (iii), and (iv) is that of Scheff& (1959, . L5).

(As mentioned previously Rule 5 was not considered in Phasc I of the Sty )

Many of the reported studies in the behavioral sciences that employ
"multiple group discriminant aﬁalysis" were done for the purpose of assiga-
ing an individual to one of a finite number of populations to which he
may belong. -This assignmenf-was made on the basis of a set of characteristics
observed on the individual. Sometimes, especially in personnel work a-d
career planning studies, discriminant analysis is used primarily »s 1 o
of analyzing group and variable differences; and the classification aspect
of thé analysis is considered as a by-produgt. The primary concern of the
Present study, however, was one of identification; that is, how accurately

do different decision rules identify an individual as a member of one of
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several criterion populations? Of course, one way to answer thiz question
and, hence, compare the efficiency of these ruleé, is to determine for each
rule the proportion of correct classifications of a fixed sample of sub-
jecés. For a given set of rules being investigated the "best" one may be
defined as that one which consistently, over repeated sampling, produces
the highest proportion of correct classifications.

To aid in the interpretation of the results the percents, mééns, and
standard deviations based on chance expectations are included in the
appropriate tables. The resulting values ‘are based on the multinomial
situation present here. The expected proportion of correct classifications
for a given N-value across all k groups is

Kk

L T N .

=3
Ng1 8 8

8

In this study T, Was taken to be Ng/N. 0f course, in Phase I, p = 1/k.
The expected number of correct classifications is given by Np; and th-

expected standard deviation of the distribution of correct classiflications

is ~ YNp{(1-p) ..

The results of this study will be discussed separately for each phase

~and each k-value.

Phase I -- k = 3. The percents, means, and standard deviriiors of the

numbers of correct classifications, as reported in Table 1, r:flect the

O L T T T —

efficiency of each of the four rules studied. The means piven in Tuble 1

indicate that Rules 2V and 3V (classifying in the predictcy variable spaces



according to Rules 2 and 3, respectively) identify population membership most
accurately. This result was also evident from a comparison of the frequency
distributions of the numbers of correct classifications for each rule. The
distributions resulting from classification using Rules 2V and 3V were quite
similar. The corresponding distributions for Rules 1, 2D, 3D, and 4 yere
also similar though markedly lower. This similarity was also apparent from
the intercorrelations among the numbers of correct classifications according
to the different rules. Hypothesis (i) was clearly rejected for all four
values of N; the value of each mean square ratio (MSR) wos at least 500.
The differcnces indicated in hypotheses (ii) and (iii) were both highly
significant--as judged by the Scheffé procedure--with the use of the pre-
dictor variable spaces being favoved over the discriminant space. Since
both hypotheses (ii) and (iii) were rejected for all N-values, the results
of this phase of the study do not agree with those reported by Lohnes (1961).
That is, a significant loss in discriminating power was observed when
classifying ‘according to Rules 2 and 3 in the discriminant space raﬁher than
in thé predictor variable spaces.

The outcomes of the tests of hvpotheses (ii) and (iii) indicate that

hypothesis (iv) could be stated as

(V) Hy gy = Hay

In no case could this hypothesis be rejected. However, because in each case
the observed mean of Rule 3V was greater than that of Rule 2V, the fifth
hypothesis was stated as

) FO Py T gy =y -
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The values of the four MSRs in the testing of (V) were in no case less than
600, Hence, in each case hypothesis (v) was rejected; and Scheffé's method
was again emploved in making follow-up pairwise comparisons, Differences
between Rule 3V means on the one hand and Rule 1 and Rule 4 means on the
otner were aighly significant indicating tnat Rule 3V could de aexpecced

to produce (in the long run) the highest number of correct classifications.
Further, it was found that the classification accuracies of Rules 1 and 4
were not significantly different. This result {s not consistent with that
found by Knutsen (1955), who concluded, from his single sample, that

Rule 4 was more accurate than Rule 1. |

Phase I -- k = 5. Except for the fact that the numbers of correct

classifications were considerably larger, the results for five groups were
very similar to those for the three-group case. As seen in Table 2 the
reflected trends (from rule to rule and along N-values) are parallel to
those results when k = 3. The outcomes of the tests of the five hypotheses
of interest were also the same for the five-group situation as feor the case

of the three groups.

Phase I1 -- k = 3. The percents, means and standard deviations of the
numbers of correct classifications are given iﬁ Table 3. These results
indicate the superiority of Rules 1, 3D, and 5 in terms of accuracy of
‘identification of population membership. That these three rules tend to
produce similar degrees of classification accuracy is apparent from tables

- (not presented here) of the intercorrelations and frequency distributions
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of the numbers of correct ciassification. The correlations among these
rules ranged from .85 to .99._ It was pointed out earlier that in a
"true" senselRules 1 and 3 are equivalent. That is, thé classification
statistics used are the same except for the sample covariance matrix used
in computing the k values for each individual.l Furthermore, it has been
shown that when the Ng—yalues are the same, Rules 1 and 5 are equivalent.
Thus, descrepancies among the results yielded by Rules 1, 3, and 5 are
merely a function of the "goodness' of the sample estimates of 1 and of
"n ,g8=1, ...,.k.

Based on the analysis of variance results (no MSR was less than 200)
hypothesis (i) can not be considered tenable in any of the four sample
size cases. As judged by Scheffé's procedure, the differcnces indicated

by hypotheses (ii) and (iii) were highly significant in all cases. Rule 2

e T T T S

in the predictor variable spaces produced a greater number of correct
classifications than in the reduced or discriminant space for all N-values.
Rule 3, on the other hand, appears to be more accurate for 211 N-values
considered in this study if it is applied in the reduced space. This latter
result is ﬂot éonsistent with that found in Phase I.

The outcomes of the tests of hypotheses (ii) and (iii) indicate that

hypothesis (iv) can be stated as

(iv) HO P Mgy T My ¢
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This hypothesis was rejected in all four situations, with Rule 3 (in the
discriminant space) being favored for each sample size. This result lead

to the following statement for hypothesis (v):

() Hy &by = bgp = Mg =g

Since the MSRs resulting from the analysis of variance in the testing of
this hypothesis were at least 700 for any N-value, these four rules were
not judged to be equally accurate. The method of Scheffé was again
employed in making the follow-up pairwise comparisons. Differences
between Rule 4 means on the one hand and means of Rules 1, 3D, and 5

on the other were highly significant. 1In all situations the significant
results indicated that Rule 4 would be expected to produée (in the long
run) fewer correct classifications. Further, it was found that the
classification accuracies of Rules 1 and 3D, 1 and 5, and 3D and 5 were,
in each case, not significantly different. The results of the tests

following hypothesis (v) are summarized in Table 4.

-— em  ea = e e em = e e ee e

Phase II -- k = 5. As in the three-group case, Rules 1, 3D, and 5
produced the gréatest number of cerrect classifications (see Table 5).
Again hypothesis (i) was rejected in each case (all MSRs were at least
300), and of the four rules considered in this hypothesis results of
applying Scheffé's procedure indicated Rule 3D as being the most accurate.

Table 6 summarizes the results of the application of Scheffé's individual
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comparison test following significant MSRs (all ratios were at least
1000) of the tests of hypothesis (v). Note that for N = 450 Rules 1

and 5 ar: more accurate thgn_Rule 3 (in the discriminant space). For

the other two N-values, the comparisons of Rule 1 versus Rule 3D and

Rule 5 versus Rule 3D indicated no significant differences in classifi-
cation accuracy; and Rules 1 and 5 were equally accurate for all N-values.
Again, as in the case of k = 3, Rule 4 was found to be less accurate

than Rules 1, 3D, and 5.

- e e m e men  em  m e  mm e wm wm

It should be noted that sampling performed with different orderings
of subsample sizes produced very similar results; that is, nearly the
same rankings of the rules (with respect to ciassification accuracy)
resulted. Also, it is of interest to note that the results of applying
Rule 5 in the reduced space were almost identical to its application in
the predictor variable spaces; the mean of the seven differences of mean
number of correc; classifications over both values of k (four for k = 3,
three for k = 5) was .79 and the mean correlation between classification

accuracy in the different spaces over both values of k was .95.

Discussion
Any remarks concerning the results of Phase T must necessarily be
made in light of a situation characterized by the following restrictions:
1) the k criterion populations are p-variate normal, 2) the k population
covariance matrices are identical, 3) the a priori probabilities of popu-

lation membership are identical, 4) the number of individuals drawn from




each population is the same, and 5) each sample of individuals is
classified on the basis of the sample data. It was judged that the
populatior covariance (i.e., correlation) matrix used in this study
was not atypical of those found in practice (Cochran, 1964, p. 186).
Perhaps one of the most striking findings of Phase I was the
decreasing accuracy of classification with increasing N. One possible
reason for this is the potential bias that may have been brought into
the situation because of the use of each observed group covariance
matrix rather than the pooled matrix and/or the sampling process itself.
If a bias was present the larger sample sizes would reflect this more
distinctly causing lesser accuracy. Another explanation which accounts
in part for the outcome at hand is as follows. Let us consider Rule 2V
in which the classification of individual n is based on the distance of
his profile point to the centroid of each of the k groups. In the case
of group g, this distance is equal to the mean distance between n's pro-
. file point and each of the profile points for the Ng individuals in the
group.9 In the event that individual n is a member of group g, one of
the distances entering into the mean necessarily has a null value. The
effect of this would be expected to be inversely related to the size of

Ng' In a two-group case the "true'" proportion of correct
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classifications is easily estimable, and in the éituation of this
study is obtainable directly using 6(A/2) where ¢ is the standard
normal distribution function and A2 is defined by [22] (Dunn, 1971).
The sinulation procedure ;as repeated exactly as in Phase I except
for the consideration of only two criterion populations (k = 2). The
proportion of correct classifications also decreased with increasing
total sampie size, and the proportion seemingly approached ¢ (a/2),
which was .755 in this case. As poinﬁed out by Glick (1972), computing
the probability of correct classification for k > 2 involves evaluating
an integral over a p-dimensional region, the form of-which may vary
with each rule.v |

That, for the given situation, all of the rules yielded results
that were better than if the classifications were made at random is
clear from a comparison with the chance expecfations. A statistical
test of "discriminatory power" is avaiiable (Press, 1972, pp. 381-383)

but, because of the obvious outcomes, is not reported here.

~
P
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: The fact that the numbers of correct classifications were larger for
4 _ .
" k = 5 than for k = 3 does not necessarily imply that classification
] -
L'q accuracy for comparable N-values improves as k increases. One reason

for this result in this phase of the study may be that the separation

- of the populstions (as measured by Mahalanobis' generalized distance
function, A%) in the k = 5 case was greater than in the case of k = 3,
For k = 3 the mean A2 was 1.55; for k = 5 the mean was 3.86. A closer

. examination of Tables 1 and 2 reyeals that under thé conditions of the
present study the accuracy of classification from use of most of the
rules appears to depend upon Ng rather than k., TFor example, the applica-~
tion of Rule 2 in the variable spaces yielded 81.i% accuracy for k = 3
and Ng = 30 versus 80.17% for k = 5 and Ng = 30; 74.0% for k = 3 and

Ng = 50 versus 71.1% for k = 5 and Ng = 60; 67.7% for k = 3 and Ng = 100

,
MY

versus 67.8% for k = 5 and Ng = 90, Such a conclusion would be wvalid
if the distances between the population centroids were the same for both
k = 3 and k = 5, but they werec not.

The final remarks pertaining to the results of Phase I have to do
with classification in the discriminant space as compared to classification
based directly upon the original p variables. It is a fact that the
results of classification.based on Rules 2 and 3 (assuming identical
population covariance matrices) are the same regardless of whether the
original p variables or the k-1 disériminant functions are-used in compu-
ting the chi—square.valueé.' This is true because the biffercnceé anong
the group centroids are exhausted by the k-1 discriminant functions; thus

the distance between an indlvidual and a group centroid would be the same
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in the p-dinensional spaces of the total sample as in the discriminant
space. So, first, differences in classification accuracy may be expected
because of sampling fluctuations. It is important to note that with
the use of each group covariance matrix, rather than the pooled covariance
matrix, such fluctuations are indeed taken into consideration. Secondly,
since some of the discriminant functions were considered "nonsignificant"
the dimensionality of the discriminant space was sometimes less than k-1,
particularly in the five-group case.

In Phase II of the study restrictions 3), 4), and 5) mentioned at
the outset of this section were removed. The marked weakness of Rule 2D
comparad to Rule 3D in Phase II deserves some comﬁent. The same chi-square
Valueg based on the same number of discriminant functions, were operated
on by both of these rules. Upon examining the results according to sub-
sample size it was found that Rule 2D was as accurate or slightly more so
than Rule 3D for smeller Ng—values, whereas Rule 3D yielded considerably
better accuiécy for larger Ng-values. That is, by taking into consideration
the prior probabilities, as does Rule 3D, it was often found that the
largest of the posterior probabilities was associated with the largest
subsample size. That this may result is suggested by Tatsuoka (1971,
p. 226). '

A result' of Phase II which differed from thét of Phase I involves the
accuracy of Rule 3 when classifying in thé discriminant space versus
classifying in the predictor varihble spaces. In Phase II éf the

study classifying in the discriminant space Yyielded better results. It

was conjectured that this superiority of accuracy is a matter of the
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stability of the discriminant functions (over repeated sampling). By
"stability" is meant that since a discriminant function is a liné;r

composite of the predictor variables it would exhibit less sampling
fluctuation over repeated sampling than the single variables which enter

into the composite. However, an important consideration here is that the
classification statistics used in Rule 3V are based only on the Ng individuals
in group g (to deterzine D;l) whereas the statistics used in Rule 3D are
based on the total sa—ple of individuals (to determine the discriminant

functions).

To surmarize, then, in terms of classification accuracy it can be
expected that, under the conditions of either Pha;e I or Phase 1I, Rule 2
applied in the discricinant space and Rule 4 will not in the long run do
as well as the other rules. Since a true classification problem is one
which involves assigning as yet "unlabeled" individuals to one of a number
of well-defined criterion populations it may be well to only consider
c}assification accuracy of rules applied in a cross-validation setting.
(Hovever, a proportion of correct classifications when based on a "large"
calibration sample may be used as an index of discriminatory power of a

. set of predictors.) In this sense it was found in Phase II that Rule 1, .
3D, and 5 can be expected to yield the largest, and nearly the same,

number of correct classifications.

ERIC
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FOOTNOTES

It is recognized that an alternative multivariate model is
sometimes considered; when a ''total population' concept makes sense,
we are dealing wicth k ''subpopulations." The difference may bear on
interpretation of results.

“This is read as follows: 'Assign individual n to population g
if his discriminant score, Lng’ corresponding to population g is largest."

3Although the underlying statistical model of discriminant
analysis assumes no errors of measurement, in this study the predictor
variables are allowed to be fallible in that each variable has a
maximum error variance of .25. Allowing for non-zero unreliability
is in agreement with most studies involving psychometric measurement.

ATh? choice of this array of zero and non-zero weights was made
in view of a study which treats the variable selection problem. The

A and t matrices, the routine employed in arriving at A , and
pop pop

the W pop and M op matrices have been deposited with the National
Aux1liary Publicatlons Service. Order Document No. from

National Auxiliary Publications Service of the American Society for
Information Science, c/o CCM Information Sciences, Inc. 22 West 34th
Street, New York, New York 10001. Remit in Advance $ for photo-
copies or $ for microfiche and make checks payable to: Research
and Microfilm Publications, Inc.

SA low significance level (a = .10) was employed so as tc subject
the classification procedures to a relatively severe test of efficiency.
If the separation of the populations is great, many classificatory
schemes would appear to be equivalently efficient. Also, it was of
interest to keep the probability of making a Type II error--claiming
the groups are not significantly different when they actually are--~
low; hence, a large a-value was used.

'6The smallest total sample size that could be used with k =
was 150 and with k = 5 was 300 since the given ratios requ1re one
subsample of size 10; with p = 10 a smaller number of "individuals"
would produce a dispersion matrix, D, whose determinant is zero
(since the rank of D would be less than 10).
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A nodification of the least squares technique used in arriving
at the classification statistic for Rule 4 was required because of the
unequal subsample sizes enpleyed in Phase 1T (sce Horst, 1936b).

The conservative test suggested by Box (1954) was employed in all
situations.

9. .
inis stems froz the fact that

< 1
- X = X - X + (X - X + o0 + 'Y -~ X -
X 2o n [(} }lg) (} ;’_2 ) (b }‘\' )]




TABLE 1

Phase 1
Percents, Means, Standard Deviations of the Number of Correct
Classificarions for k = 32
Rule
1 2y 2D 3v 30 Chance
Expectations

66.67 81.1% 66.07% 83.0% 66.97% 66.27 33.3%

= 90 59.96 73.04 59.44% 74.70 60.19 59.60 30
(4.44%) (3.57) (5.31) (3.54) (4.93) (4.46) (4.47)
63.4% 74.0% 63.5% 75.0% 63.9% 63.37% 33.3%

= 150 95.06 110.93 95.19 112.46 95.79 94.94 50
(5.87) (6.238) (5.48) (5.92) (6.17) (5.73) (5.77)
- 61.7% 67.7% 61.9% 68.4% 61.8% 61.6% 33.3%

= 300 185.16 203.21 125.66 205.34 185.31 184.90 100
(7.74) (8.569) (7.86) (9.02) (7.67) (7.50) (8.16)
61.2% 65.2% 61.2% 65.8% 61.4% 61.27% 33.3%

= 450 275.46  293.59 275.35 296.31 276.26  275.40 150
(10.03) (11l.11) (10.12) (10.59) (10.16) (10.09) (10.00)

a . .
Standard deviations are given in parentheses.



TABLE 2

Phase I

Percents, Means, and Standard Deviations of the Number of Correct

Classifications for k = 52

Rule

1 2v 2D 3V 3D 4 Chance
Expectations

69.17 89.47 71.0% 91.0% 72.4% 68.4% 20.0%
e N =290 62.20 80.50 63.93 81.86 -65.16 61.53 18
(4.53) (3.25) (5.22) (2.93) (4.79) (4.50) (3.79)

66.9% 80.1% 68.5% 81.27% 68.9% 66.1% 20.0%
N = 150 100.38  12¢.i3 102.69 121.87 103.41 99.19 30
(5.28) (4.73) (5.68) (4.40) (5.18) (5.12) (4.90)

63.67% 71.1% 64.27% 71.87% 64.67% 63.2% 20.0%
N = 300 190.67  213.41 192.6% 215.36 193.72 189.52 60
(8.26)  (7.98) (8.34) (7.66) (8.34) (8.66) (6.00)

62.8% 67.8% 63.4% 68.3% 63.77% 62.5% 20.0%
N =450 "282.67 304.91 . 285.40 307.43 286.49 281.05 90
(10.17) (10.43) (10.20) (9.97) (10.16) (9.71) (8.45)

a s s - .
Standard Deviations are given in parentheses.




TABLE 3

Phase 11

Percents, Means, and Standard Deviations of the Number of Correct

Classifications for k = 32

Rule
1 2v 2D v 3D 4 5 Chance
Expectations

66.27 62.37% 57.1% 63.5% 65.8% 56.0% 66.6% 47.6%

N = 150 99,35 93.50 85.59 95.26 98.72 84.00 99.90 71
(5.36) (5.29) (6.81) (4.84) (5.12) (6.48) (4.99) (6.12)
68.3% 64.07% 56.8% 64.97 68.2% 56.9% - 68.2% 47.67%

N = 300 204.79 192.01 170.35 194.81 204.71 170.77 204.58 143
(6.67) (8.13) (9.08) (7.75) (6.39) (8.64) (6.51) (8.65)
69.6% 63.8% 58.5% 67.8% 69.6% 59.7% 69.67% 47 .6%

N = 450 313.17 287.04 263.38 304.93 313.11 268.83 313.16 214
(9.01) (9.64) (10.85) (7.45) (8.72) (10.26) (8.85) (10.59)
69.8%  64.2% 62.07% 67.8% 69.8% 59.3% 69.8% 47.6%

N = 600 418.65 385.02 372.22 406.65 418.75 355.74 418.95 285

(10.23) (11.06) (11.72) (10.89) (10.34) (12.50) (10.13) (12.23)

a . .
Standard deviations are given in parentheses.




TABLE 4

Mean Differences -nd Scheffé

Critical Values for k = 3

: . Rk R % % %% == Critical
. 17%3p XK, XXy XgpX o X-Xg, o XX, Valuea
N = 150 63 15.35 .55 14,72 1.18  15.90 1.84
N = 300 .08 34,02 -.21  33.94  -.13  33.81 3.08
N = 450 06 44.3%  -.01  44.28 05 44,33 3.0:
N =500 -.10 62.91 .30  63.01 20 63.21 3.83

a
Based on ;99F1’99




TABLE 5
Phase II

Percents, Means, and Standard Deviations of the Number of Correct

. Classifications for k = 52
Rule
1 2v 2D 3V 3D 4 5 Chance
: Expectations
65.9% 6C.4% 59.0% 60.8% 65.3% 54.6% 66.0% 28.8%
N = 300 197.60 181.26 1/6.93 182.33 195.95 163.77 197.88 87
(7.65) (7.16) (6.73) (7.05) (7.15) (8.38) (7.45) (7.85)
65.5% 58.4% 56.6% 61.1% 64.8% 58.47 65.62 28.8%
N = 450 294 .82 262.77 254,84 274 .92 291.44 262.90 295.05 130
(10.34) (10.86) (11.56) (8.76) (9.92) (10.84) (10.13) (9.61)
65.0% 58.6% 59.9% 61.8% 64.6% 54.5% 65.0% 28.8%
N = 600 390.04 351.57 359.34 370.80 387.34 326.83 389.99 173

(11.,51) (13.38) (11.78) (13.07) (11.47) (11.68) (11.50) (11.10)

a s : .
Standard deviations are given in parentheses.




TABLE 6

Mean Differences and Scheffé”

Critical Values for k = 5

=~ % % % =% = = = .2 = =  Critical
78 KR xR XypRy o XXy XeX o aigea

= 300 1.65  33.83 .28 32,18  1.93  34.11 2.63

= 450 3.38  31.92 .23 28.54  3.61  32.15 3,14

- 2.70  63.21 -.05  60.51  2.65  63.16 3.78

600

4Based on

.99%1,99



